Ionic current inversion in pressure-driven polymer translocation through nanopores.
نویسندگان
چکیده
We predict streaming current inversion with multivalent counterions in hydrodynamically driven polymer translocation events from a correlation-corrected charge transport theory including charge fluctuations around mean-field electrostatics. In the presence of multivalent counterions, electrostatic many-body effects result in the reversal of the DNA charge. The attraction of anions to the charge-inverted DNA molecule reverses the sign of the ionic current through the pore. Our theory allows for a comprehensive understanding of the complex features of the resulting streaming currents. The underlying mechanism is an efficient way to detect DNA charge reversal in pressure-driven translocation experiments with multivalent cations.
منابع مشابه
Investigating the translocation of lambda-DNA molecules through PDMS nanopores.
We investigate the translocation of lambda-DNA molecules through resistive-pulse polydimethylsiloxane (PDMS) nanopore sensors. Single molecules of lambda-DNA were detected as a transient current increase due to the effect of DNA charge on ionic current through the pore. DNA translocation was found to deviate from a Poisson process when the interval between translocations was comparable to the d...
متن کاملMolecule-hugging graphene nanopores.
It has recently been recognized that solid-state nanopores in single-atomic-layer graphene membranes can be used to electronically detect and characterize single long charged polymer molecules. We have now fabricated nanopores in single-layer graphene that are closely matched to the diameter of a double-stranded DNA molecule. Ionic current signals during electrophoretically driven translocation...
متن کاملTranslocation frequency of double-stranded DNA through a solid-state nanopore.
Solid-state nanopores are single-molecule sensors that measure changes in ionic current as charged polymers such as DNA pass through. Here, we present comprehensive experiments on the length, voltage, and salt dependence of the frequency of double-stranded DNA translocations through conical quartz nanopores with mean opening diameter 15 nm. We observe an entropic barrier-limited, length-depende...
متن کاملControlling DNA capture and propagation through artificial nanopores.
Electrophorescing biopolymers across nanopores modulates the ionic current through the pore, revealing the polymer's diameter, length, and conformation. The rapidity of polymer translocation ( approximately 30,000 bp/ms) in this geometry greatly limits the information that can be obtained for each base. Here we show that the translocation speed of lambda-DNA through artificial nanopores can be ...
متن کاملMultichannel simultaneous measurements of single-molecule translocation in alpha-hemolysin nanopore array.
We present a microarray system that enables simultaneous monitoring of multiple ionic currents through transmembrane alpha-hemolysin nanopores arrayed at bilayer lipid membranes. We applied the self-assembling ability of lipid molecules interfaced between an aqueous solution and organic solvent to induce bilayer membrane formation at a microfluidic device; the device consists of a hydrophobic p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 114 8 شماره
صفحات -
تاریخ انتشار 2015